PLP 6404 Epidemiology of Plant Diseases Spring 2015 Lecture 29: Decision support systems

Prof. Dr. Ariena van Bruggen Emerging Pathogens Institute and Plant Pathology Department, IFAS University of Florida at Gainesville

UF FLORIDA

Introduction to decision support systems

- A Decision Support System (DSS) integrates and organizes all types of information required for production decisions.
- DSS tools vary in complexity
 - Data component, e.g. automated weather stations or site-specific weather products
 - Tools for processing data: rules, schedules of management, equations
 - Combinations of decision aids
 - Complex computerized expert systems

UF FLORIDA IFAS EPI

 Idealized Decision Support System for plant disease management showing components (red font), methodology (black font), and tools (blue font) (Magarey et al., 2002)

Computerized disease forecasting systems

- Stand-alone forecasters: in-field electronic forecasting systems
- Example: Spectrum Technologies Inc. http://www.specmeters.com/home_usa.html
- Example: Weather INnovations Inc. with 'Beetcast' http://www.michiganbeets.com/contact.cfm
 - Microprocessor based
 - Plus environmental monitoring equipment (sensors, gauges, etc.)
 plus software to: process weather data, predict infection or
 - disease severity, provide management recommendations

UFAS

F

Computerized disease forecasting systems

- Electronic units commercially available for forecasting several different diseases on the following crops:
 - Apple/pear, grapes, cherries
 - Turf grass, potatoes, tomatoes, onions etc.
- Advantages of in-field forecasting units:
 - potential to provide more accurate, site-specific information
- Disadvantages:
 - units are relatively expensive (\$1000-\$3000) and easily damaged (by lightning, field equipment, etc.)
 - require periodic maintenance, sensor calibration, frequent data acquisition

UNIVERSITY of FLORIDA IFAS EPI

Computerized disease forecasting systems

- Electronic units and interactive systems
- Example: downy mildew of lettuce
- Development of a forecasting system
 - Research results used by a company that developed an in-field classical system
 - Intention: develop an interactive spatial system based on weather forecasts

UF FLORIDA

4/17/2015

Field studies – weather variables -> infection				
EXPLAINING VARIABLES Attornoon (14:00 to 21:59 hrs), mean wind speed mean and max. temperature mean and max. tentrave irradiance mean vapor pressure deficit heat withere derative deficit	The most important weather variables for infection of lettuce by downy mildew as determined by stepwise discriminant analysis			
Neglit (22:00 to 05:09 hrs), mean which speed mean temperature mean relative humidity hours AH > 05 hours AH > 05 hours AH > 05 Morning (06:00 to 13:59 hrs), mean which speen mean relative humidity hours RH > 000 mean and max, shortware tradiance mean and max. shortware tradiance	Combined Pajaro Rio Del Mar Nipomo Castroville Data Set			
	AM-LWD AM-LWD AM-LWD AM-LWD AM-LWD AM-LWD PM-RH PM-SOL MAX-TEMP AM-LWD PM-RH PM-RH AM-RH00 AM-TEMP PM-RH MAX-TEMP NI-RH95 NI-RH95 NI-WIND NI-VPD AM-WIND NI-RH95 PM-RH NI-RH95 PM-RH00 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH90 PM-VPD PM-RH95 PM-RH95 PM-RH90 PM-VPD PM-RH95 PM-RH95 PM-RH90 PM-VPD PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH95 PM-RH50 PM-RH50 PM-RH50 PM-RH50			
	0.894 0.886 0.839 0.745 0.711			
leaf wetness duration CLASSIFICATION VARIABLE 0 - Day without infection 1 - Day with infection UNIVERSITY of	e positive effect • negative effect • for interpretation			
IFAS EPI				

Computerized disease forecasting systems

Online forecasting systems – Examples:

- Enviro-weather Michigan State University
- http://www.enviroweather.msu.edu/home_map.asp
- AU-PNUT for early and late leaf spot of peanut Auburn University, AU-PECAN for pecan scab – University of Georgia
- http://www.awis.com
- UC IPM Online: Statewide integrated pest management program University of California, Davis
- http://www.ipm.ucdavis.edu/GENERAL/tools.htm

UF FLORIDA

Computerized disease forecasting systems

- Interactive forecasting systems
- <u>Example</u>: EPIPRE (epidemiology, prediction, prevention) since 1980s for pest control in winter wheat (Zadoks, 1981)
 - Information about at least 6 diseases & insect pests
 - Crop, soil and weather taken into account:
 - Participation fee, enter own field monitoring, received forecast info from centralized location where info was processed.
 - A pesticide application recommended when predicted severity was above chosen threshold for a specific disease or pest.
 - EPIPRE now replaced by CERDIS predicting fungal diseases and making management recommendations for wheat and barley (from Opticrop)
 - Recently: EPIWHEAT for leaf rust and Septoria leaf spot by S.

Savary UF FLORIDA IFAS EPI

Computerized disease forecasting systems

- Interactive forecasting systems
- <u>Example</u>: Plant-Plus by Dacom company since 1990s for disease control on potato (Raatjes et al., 2003)
 - Interactive, spatial DSS for management of late and early blight and irrigation management
 - Communication of data and info between farmer, consultant, and processor
 - Choice of interface and output (SMS, Fax or Email)
 - Five day weather forecast -> predictive risk assessment
 - Disease models require on-farm, automatic, weather data
 - Uses a biological model based on the lifecycle of the fungus
 - Combines infection events with unprotected tissue area
 - Recommends when to apply a new spray and what type of chemical to use: contact, translaminar or systemic.

UF FLORIDA IFAS EPI

Computerized disease forecasting systems

- Example: Plant-Plus by Dacom company
- Now in 10 countries
- Results:
 - Netherlands: potato late blight model tested at many locations since 1994, 10,000 participating farmers in 2001
 - on average 28% reduction in sprays (no difference in disease/yield)
 - USA: *Phytophthora* model tested 7 States at 14 locations in 2003, 2004, 2005
 - on average 4 fungicide applications recommended versus 7.4 in standard practice (46% reduction, no significant difference in protection or vield.
 - Canada: Alternaria in potatoes, one test site in 2005
 - Dacom advised 2 sprays, WISDOM and TOMCAST recommended 4 sprays (no difference in disease or yield)

UF FLORIDA

UF FLORIDA

EPI

IFAS

Computerized disease forecasting systems Interactive forecasting systems: Strawberry Advisory System (University of Florida) County Hapet Current Climate Phase: La I La Mila developt as the Pacific Aur Simulation AgroClimate Δ models in R Strawberry Advisory System (SAS) Anthracnose: temp > 18C, sature Part wetness В Botrytis rot: temp 15-22C, wetness>4hr С (RH>95%) D **UF** FLORIDA IFAS EPI

Computerized disease forecasting systems

 Interactive forecasting systems: Strawberry Advisory System (University of Florida)

Computerized forecasting systems - spatial

- Forecasting by trajectory analysis
 - Example: Soybean rust (Univ. Florida /NC State Univ.)
 - Soybean rust (*Phakopsora pachyrhizi*) forecast is based on availability of inoculum (spore release from 8 AM through 1 PM; trajectory start at 10 AM)
 - Survival on kudzu in winter

 - http://sbr.ipmpipe.org/cgi-bin/sbr/public.cgi

 - Based on trajectory analysis of airborne inoculum and probability of favorable weather conditions for spore production and spread, and weather conditions for infection (6-7 hours of leaf wetness at a dew temperature between 18 -26.5 °C; no infection 27.5 °C.

UNIVERSITY OF FLORIDA

Forecasting systems – expert systems

- Expert systems are computer programs that use logic and problem-solving of a human expert, using concepts developed in the field of artificial intelligence (AI)
 - can employ heuristics, a problem-solving technique that uses "rules-of-thumb" based on experience to make management decisions.
 - not subject to the constraints of conventional computer programming, encountered with simulation or optimization analysis.
- Expert systems have the ability to:
 - make decisions based on incomplete or uncertain information
 - provide the user with an explanation of how its conclusion was derived

UF FLORIDA IFAS EPI

Forecasting systems – neural networks			
	Regression was used to identify sets of most important input variables:		
	LON	longitude	
 <u>Example</u>: Regression and artificial neural network modeling to predict gray leaf spot of maize (Paul and Munkvold, 2005) 	GLSR	gray leaf spot resistance rating	
	SR	maize residue on soil surface	
	PD	planting date	
	CDT4	cumulative hours of daily temperature,	
		period 4 (45-15 days before silking)	
	AVNT2	average night temperature, period 2	
		(15 before until 15 days after silking)	
	NRH904	t cumulative hours of nightly RH >=90%	
		period 4	
UNIVERSITY of			
UF FLORIDA			
IFAS			

Summary

- Introduction to Decision Support Systems
- Computerized disease forecasting systems
 - Stand-alone forecasters
 - Interactive on-line forecasting systems
 - Spatial trajectory systems
 - Expert systems
 - Neural networks
- Summary

UNIVERSITY of FLORIDA IFAS EPI