PCB 5065.

Recombination.

Instructor: Dean Gabriel

Click on the lecture desired for that day's lecture notes. These notes are constantly being revised and updated, usually just before or immediately following each lecture. You will be responsible for what is presented in class. The notes are meant to help clarify, but not substitute for, the lectures.


Lecture 1 :  9/28/20  1. Segregation, assortment, chromosome mechanics, nondisjunction.  

Lecture 2:   9/29/20  2. Genes & chromosomes.

Lecture 3: : 9/30/20  3. Linkage, gene order, linearity, crossing-over, recombination.

Lecture 4 :  10/1/20  4. Tetrad analysis & sister-strand exchange.

Lecture 5 :  10/5/20  5. Mechanisms of recombination - gene conversion & crossing over & Holliday structures.  

Lecture 6 :  10/6/20  6. Mechanisms of meiotic recombination - Double Strand Breaks, DSBR, SDSA, ECD & Consensus models. 

Lecture 7 :  10/7/20  7. Parasexuality & mitotic recombination,

Lecture 8 :  10/8/20  8. Mutagenic tools & genome editing.  

Discussion Paper :  10/12/20 Discussion Paper 2.  


Electronic (PDF) Copies of Required Reading; Click to Download

Kleckner, N. 1996. Meiosis: How could it work? Proc. Natl. Acad. Sci. USA 93:8167-8174. 

Shrivastav, M., De Haro, L.P. & Nickoloff, J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell Research 18:134-147. 

Orr-Weaver, T.L. and J.W. Szostak. 1985. Fungal Recombination. Microbial Reviews 49:33-58. 

Mushtaq. 2019. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Front.Pl.Sci. doi: 10.3389/fpls.2019.00550.    

Electronic (PDF) Copy of suggested discussion papers; Click to Download

Amoasii, L. et al., 2018. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy Science DOI: 10.1126/science.aau1549.    

Tidball, J.G. & Bertoni, C. 2014. Purloined mechanisms of bacterial immunity can cure muscular dystrophy. Cell Metab 20:927-9.    

Gantz, V.M. & Bier, E. 2014. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science.348:442-444.    

Electronic (PDF) Copies of Recommended Reading; Click to Download

Bishop, D. K. and Zickler, D. 2004. Early decision: Meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9-15. 

Cermak, T., et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(12): e82.    

Terasawa, M., Ogawa, H., Tsukamoto, Y., Shinohara, M., Shirahige, K., Kleckner, N., and Ogawa, T. 2007. Meiotic recombination-related DNA synthesis and its implications for cross-over and non-cross-over recombinant formation. Proc.Nat.Acad.Sci. USA 104:5965-5970.    

Joyce,E.F., and McKim, K.S. 2007. When specialized sites are important for synapsis and the distribution of crossovers. BioEssays 29:217-226.    

Mak, A. N. S., P. Bradley, A. J. Bogdanove, and B. L. Stoddard. 2013. TAL effectors: function, structure, engineering and applications. Current Opinion in Structural Biology 23, no. 1:93-99.    

Weinthal, D., et.al. 2010. Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science 15:308-321.    

Mahfouz, et. al. 2011. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl. Acad. Sci. USA 108:2623-2628.    

Zhang, Y., F. Zhang, X. H. Li, J. A. Baller, Y. P. Qi, C. G. Starker, A. J. Bogdanove, and D. F. Voytas. 2013. Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiology 161, no. 1:20-27.    

Practice Exam for this section  

Practice Exam Key for this section