Instructor: Dr. Ariena H.C. van Bruggen
Assistants: Ellen Dickstein (Senior Biological Scientist), Hossein Khandan (postdoc)

Department of Plant Pathology
University of Florida, 2413 Fifield Hall
Gainesville, FL 32611-0680
Phone: (352) 273-4649; Email: ahcvanbruggen@ufl.edu

Course Description:
This graduate-level course is designed to provide students with an introduction to the theory, concepts and applications of plant disease epidemiology. Students will carry out an experiment on the infection cycle of one pathogen and will be introduced to equipment and quantitative methods used in the analysis of epidemics and the factors that affect epidemic development. Practical applications of epidemiology in plant disease management will also be presented. Students will discuss recent refereed papers fundamental to epidemiology.

Credit Hours: 4

Course Objectives:
- Provide students with basic understanding of epidemiological theory and concepts
- Understand the implications of quantitative components of the infection cycle
- Introduce students to equipment and methods used in epidemiological research
- Demonstrate the practical applications of epidemiology in plant disease management
- Identify current areas of epidemiological research

Prerequisite: Introductory Plant Pathology

Class Schedule: Mondays, 8.30-11.30 am
 Wednesdays, 8.30-9.30 am
 Fridays, 8.30-11.30 am

Class Location: Monday, Wednesday and Friday: 2564 Fifield Hall or 2306 Fifield Hall (Plant Path Teaching lab), as indicated on the class schedule; first day of class (January 7, 2015) in Fifield Hall room 2564

Lecture Topics:

I. General overview of plant epidemiology
 History and terminology
 Measurement of disease
 Disease progress over time

II. Factors that affect epidemic development
 Influence of pathogen on disease development
 Airborne pathogens (quantification of inoculum, virulence, ecology)
Seed- and soil-borne pathogens
Vector-borne pathogens
Influence of host plant on disease development
 Plant growth
 Host resistance
Influence of environment on disease development
 Moisture, temperature, wind, radiation, chemical environment
 Meteorological variables and their measurement

III. Basic concepts in plant disease epidemiology
 Disease progress in time
 Simple models
 Model fitting, model comparison
 Comparison of epidemics
 Complex models
 Advanced topics
 Analysis of plant disease epidemics using SAS
 Disease progress in space
 Dispersal gradients, long-range transport
 Spatial patterns of disease and inoculum
 Spatial variability, sampling, interplot interference

IV. Modeling of plant disease
 Intro to modeling, relational diagrams
 Modeling of vector-borne diseases
 Modeling of a disease cycle
 Modeling of population dynamics in the rhizosphere

V. Epidemiology and disease management
 Epidemiological strategies for disease management
 Reducing initial inoculum
 Reducing the rate of epidemic development
 Reducing the duration of epidemic development
 Crop loss assessment
 Components of crop loss
 Assessment techniques
 Modeling crop loss
 Disease forecasting, advisories, risk indices
 Decision aids for disease management
 Examples of forecasting models
 Example of a risk model
 Risk analysis and management of enteric pathogens associated with plants

Lab, greenhouse, field and computer exercises:

I. Disease assessment on the computer and in the field
II. A class experiment on quantification of successive phases in the disease cycle (with *Colletotrichum* sp. on melons), including analysis of data and entering parameter estimates into a simulation model

III. Various exercises to calculate parameter values for different disease progress curves over time and spread of disease in space using SAS;

 BRING YOUR OWN LAPTOP WITH SAS ON IT!!!!

IV. Various computer simulation and modeling exercises.

Requirements for grading:

Lab reports (individual):
- Lab Experiments: January 23, February 9 and March 30
- Computer exercises: February 6, February 13, February 16, February 20, February 23, February 27, March 9, March 20, April 10, April 13

Quizzes and Exams:
- Quiz 1 and 2: February 4 and April 1
- Midterm Exam: March 11
- Final Exam: May 1

Literature presentations (groups of three students):
- Presentations: February 20, February 25, March 13, March 18, March 25, April 3, April 15

Grading:
- Quizes (together): 10%
- Midterm exam 10%
- Final Exam 30%
- Experimental lab reports 20%
- Computer exercise reports 20%
- Oral presentations 10%