SELECTION OF MOLECULAR APTAMERS FOR IDENTIFICATION OF LIVE CELLS OF RALSTONIA SOLANACEARUM: A NEW POTENTIAL METHOD IN PLANT PATHOLOGY

Patrice Champoiseau, University of Florida

2009 APS ANNUAL MEETING
August 1-5, 2009 • Portland, Oregon
Outlines

- Introduction
- Objective
- Method & protocols
- Results
- Conclusion & perspectives
- Acknowledgements
Introduction

- *R. solanacearum* causes bacterial wilts on a wide range of planted crops, ornamentals and weeds worldwide.

- “Species complex”.
 - 5 races
 - 5 biovars
 - 4 phylotypes

- Race 3 biovar 2 (R3bv2).
 - World wide distribution except US and Canada
 - Major disease of potato
 - Introduction in the US in latently infected geranium cuttings
 - Strictest biosecurity regulations

- Critical need for unambiguous identification of R3bv2. Development of fast, sensitive, and specific detection methods.
Objective

Evaluate the effectiveness of cell-SELEX* to produce molecular aptamers for differentiation of strains of *R. solanacearum* (detection of live cells).

System Evolution of Ligands by EXponential enrichment
Method & protocols

- **Molecular aptamers.**
 - Single-stranded oligonucleotides.
 - Bind with high affinity to their target.
 - Detection of whole cells.
 - Small molecules, chemically stable.
 - Molecular probes for cancer studies.
 - Blocking molecules: reduced virulence in *M. tuberculosis*.

- **Cell-SELEX.**

 Repeated competitive binding from an initial DNA or RNA library (random sequences) to the target molecules.
Method & protocols

- Schematic representation of cell-SELEX.

From Shangguan D. et al. PNAS, 2006
Method & protocols

Principles of flow-cytometry

- **FSC** = Indication of particle’s size.
- **SSC** = Information about the outer composition of a cell.
- **FL** = Fluorescence detector (1 to 4).
Method & protocols

- Flow-cytometry data for cell-SELEX

A “shift” of the fluorescence intensity pick is an indication of enrichment of single DNA sequences with high affinity to the target cells (potential aptamers).
Method & protocols

Sequence analysis

From around 10^{15} unique random sequences

<table>
<thead>
<tr>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homologous family 1</td>
</tr>
<tr>
<td>Homologous family 2</td>
</tr>
</tbody>
</table>
Method & protocols

- **Bacterial strains (cells)**
 - **UW485**: Race 3 biovar 2T
 - **Rs5**: Race 1 biovar 1 (Florida)

- **Cell growth conditions**
 - **Liquid medium**: MMP
 - **Phosphate-based buffer**
 - **36 hours growth**

- **ssDNA Library (78 nucleotides)**

 ![Diagram of ssDNA Library](Diagram)

 - **Library**
 - 5' - ACG ACA CAC AGC ACA CTC A - (NNNNNNNN...) - TC TTC TCC CTC GTC CTA CCT - 3'
 - 19 39 20
 - **Forward Primer**
 - 5' - ACG ACA CAC AGC ACA CTC A - 3'
 - **Carboxyfluorescein**
 - **Reverse Primer**
 - 5' - AGG TAG GAC GAG GGA GAA GA - 3'
 - **Biotin**

 Fluorescence dsDNA (PCR product) → ssDNA
Results

- Flow-cytometry histograms (10 rounds)
 - 20,000 cells

Target cells (UW485)

Negative cells (Rs5)
Results

- Flow-cytometry histograms (14 rounds)
 - 20,000 cells
 - Shift

Target cells (UW485) Negative cells (Rs5)

- Library
- 11th
- 12th
- 14th
Results

- Flow-cytometry histograms (17 rounds)
 - 20,000 cells

Target cells (UW485) | Negative cells (Rs5)
Results

- Sequencing of evolved DNA pools (454)

SP10

353 repeated sequences (out of 3263)

One homologous family: **12 repeated sequences (0.4% total)**

SP16-17

769 repeated sequences (out of 8044)

Several homologous family: **22 repeated sequences (0.3% total)**

Only one conserved DNA family

For Primer – `cagggtcgagatgtttgcgatcctgttgcgtccgtgga` - Rev Primer
Conclusion and perspectives

■ Conclusion

- Efficiency of flow-cytometry to differentiate cells of *R. solanacearum* after 10 rounds of selection.
- Enrichment of DNA sequences with cell-SELEX.
- Low enrichment due to variability in target molecules (could be EPS ?).
- Amplification of potential aptamers not shown.

■ Perspective

- **Increase the number of repeated sequences.**
 More rounds of selection.
- **Test the affinity of the repeated sequences.**
 Amplification and testing these sequences as potential aptamers.
- **Control the specificity of the repeated sequences.**
 Test with target cells and heterologous bacteria.
Acknowledgements

- Team members.

 Caitilyn Allen, Department of Plant Pathology, University of Madison-Wisconsin.
 Jeffrey B. Jones, Department of Plant Pathology, University of Florida.

- Team collaborators.

 Weihong Tan, Department of Chemistry, University of Florida.
 Kwame Sefah, Department of Chemistry, University of Florida.

- Financial support.

 National Research Initiative (NRI) program of the USDA Cooperative State Research, Education, and Extension Services (CSREES).