Sakata Seed America

Quality · Reliability · Service

TOP VEGETABLE CROPS

TOP FLOWERS

Breeding Stations

Theoretical Territory

PLANT PATHOLOGY

The science of plant pathology contributes to the success of Sakata Seed by providing support in four major areas:

Breeder Support

Seed Production

Seed Health

Extension

Quality · Reliability · Service

BREEDER SUPPORT

Inherent resistance of a plant to one or more diseases is often essential for the success of a variety. One key benefit may be a reduction in pesticide use. Breeder support involves the development and application of screening techniques to evaluate and select for resistance to improve varieties.

SEED PRODUCTION

Field and seed-borne diseases can significantly reduce seed yield and quality. Seed-borne pathogens can also be transmitted to the next generation and cause crop damage. Pathologists work closely with the Production Department and Quality Control in developing strategies to minimize these potential threats.

A susceptible broccoli inbred killed by Sclerotinia white mold

Bacterial blight (*Xanthomonas hortorum* pv. *carotae*) on carrot umbel and leaf

Severe black rot infection in a cabbage field. Inset: typical lesion with black veins

SEED HEALTH

Sakata Seed has made a commitment to producing and marketing healthy seed, and has an extensive seed health testing program as part of its overall commitment to seed quality.

Cabbage seedling bioassay to identify virulent black rot bacteria (Xanthomonas campestris pv. campestris)

Seedling grow-outs for the detection of *Acidovorax avenae* subsp. *citrulli* (Aac) in contaminated seed. Aac lesions on melon (top) and watermelon seedlings

Serological testing by ELISA is used to detect seedborne viruses. The yellow color indicates a positive reaction; colorless wells are negative

EXTENSION

As part of its overall commitment to servicing our customers and growers, Sakata provides technical support, including disease information, prevention, and control. This information may be provided in the form of seminars, technical sheets, or direct advice to the customer.

Information on disease etiology, transmission, and control may be provided in the form of a technical sheet

Broccoli Head Rot

become a damaging disease of broccoli heads in certa coastal regions of California. Two closely related fungi Alternaria brassicae and A. brassicicola, can cause this disease. However, to date, we have only isolated A. brassicicola from diseased head samples collected in the Santa Maria and Salinas areas. Pathogenicity tests have confirmed that A. brassicicola causes symptom

Infection of heads begins as a yellowing of individual flower buds (fig. 1); the disease quickly progresses to form a dark brown, sunken lesion. Buds at the edge of the lesion may become chlorotic. The disease may affect only a small area (1/16-1/4 inch) of a floret, or ca encompass large portions of the head (fig. 2). Dark lesions often extend along the branching stalks below the florets (fig. 3). These lesions do not extend very deeply into the stalk tissue. Soft rot bacteria can quick ly enter Alternaria infected tissue, resulting in a soft,

Alternaria head rot can be confused with bacterial hea rot caused by Pseudomonas fluorescens (=P marginalis). Alternaria head rot differs from bacterial head rot in producing dark lesions on the branching stalks below the flower clusters (fig. 3), and in the formation of a dark brown, velvety spore-bearing mass on the infected area under humid conditions. These spore masses can be seen with a hand lens. Laboratory testing is often

These fungi also attack cabbage, cauliflower, Chinese cabbage and many other crucifers, causing seedling dis cases and leaf spot, as well as head rot. On seedlings, the fungi produce pinpoint to small dark spots on stems and leaves; severe infections may result in plan stunting or even damping-off. Leaf spots caused by Alternaria begin as small, darkened areas with chloro margins (fig. 4), and can expand rapidly to form large circular spots up to 1-2 inches in diameter (fig. 5). T spots are shades of brown to black and may be zoned. Dark brown masses of spores are produced in the

2

2

н 0

Main Sakata FL Campus

SAI Florida Pathology

Randy Johnson (Branch Manager)
Marco Bello (Lead Plant Pathologist)
Traven Bentley (Plant Pathologist)

SAI Florida Pathology

70% Breeder support
15% Quality Assurance
8% Extension
7% Administrative

Current Disease Screens

	Crop	Disease	Location	
	BC	Pinrot, downy mildew	СА	
	BT/SC	Downy mildew, Rhizoctonia, Cercospora, Pythium, yellows	WA	
	СВ	Black rot	FL	
	CF	Verticillium	СА	
	CR	Nematodes	СА	
		Alternaria	FL	
	ME	Powdery mildew (1, 2)	FL CA	
		Gummy stem blight, downy mildew, Fusarium (1, 2), ZYMV, PRSV, CYSDV	FL	
	ON	Fusarium basal rot, pink root	NM	
	PP	Tobamo (<i>L1, L3, L4</i>),	СА	
		Phytophthora	CA, FL	
		Bacterial spot (<i>Xcvr 1- 6</i>), <i>Mi3</i> , PVY (0.1, 0.1.2), TEV, TSWV	FL	
	RA	Rhizoctonia, yellows	CA	
	SP	Downy mildew (4 - 7, 10)	WA	
	SQ	WMV, PRSV, ZYMV, CMV	FL	
	ТМ	ASC, Stemphylium, Vert 1, crown rot, Fus. wilt (I, I2, I3), RKN, corky root, speck, ToMV	FL	
		TYLCV, TSWV, Xcv (?)	FL	
	WM	Anthracnose 1, GSB, Fus. wilt 1, WMV, PRSV, ZYMV	FL	

Resistance: SAI definition

The ability of a plant to restrict attack by a specified pathogen or pest when compared to the reaction of susceptible plants grown under similar environmental conditions and pathogen or pest pressure. A resistant plant is expected to suffer very minor damage, but may exhibit some symptoms under heavy pathogen/pest pressure"

Types of resistance

Immunity
Classic single dominant genes (vertical)
Incomplete dominance
Recessive genes
Polygenic/quantitative (horizontal)
Background/vigor
Systemically acquired resistance
Cross protection
GMO's

Resistance Breeding Considerations

 Exotic versus endemic pathogens Economic impact of disease Production or grower benefits? Economic value of Res. or liability of sus. Source(s) of resistance available Seedling, MAS, Lab, whole plant? Selection versus index tests Core Disease resistance package How/if a claim should be made

Is the resistance relevant?

Resistance to the pathogen and/or disease
Years required to achieve commercial resistance or break undesirable linkage
Grower acceptance
Screening in the absence of the disease pyramid (vectors-envir.-host-pathogen)
Disease package – opportunity?

Screening strategy

• World wide ring tests = breadth of resistance • HR-type resistance = excised leaf Poor resolution or difficult tests = MAS? Polygenic resistance may need to be assessed under field conditions Breed for hort or disease first? Population breeding

TYLCV – degrees of res./sus.

Plant/seedling "shut down" (sus)
Some flower abortions and foliar symptoms and some yield reductions
Yield OK, but foliar symptoms noted
No symptoms seen and yield unchanged (Res)

 No symptoms and no virus detected (immune)

Intermediate Resistance: Sakata definition

• "The ability of a plant to endure attack by a specified pathogen by performing and producing in spite of the disease. An int. resistant plant my exhibit a wider range of symptoms or damage than a resistant plant, but still should perform better than a susceptible plant grown under the same conditions/disease pressure"

Resistance caveats

TSWV tomato fruit spotting (*Sw5*)
TSWV pepper <10% infections (*Tsw*)
Some foliar diseases where pesticide applications could be reduced
Cucurbit viruses
Tobamovirus resistance in GH's

ZYMV typical symptoms

ZYMV: SYSTEMIC HR?

Stages of hybrid development

G0: Breeder's program (1,000's of lots)
G1: Breeder's focus
G2: Experimental hybrids/early production
G3: "Finished" hybrid (a few dozen) larger production and some sales begin
G4: named Commercial product

Breeding trait hierarchy in seed industry

- Shelf life
- Yield
- Market niche
- Disease resistance
- Flavor

Traits pursued in the future will be increasingly complex

- Gene editing will revolutionize the pursuit of complex traits:
 - Yield
 - Nutrition
 - Flavor
 - Color
 - Shelf Life
 - Drought or salt tolerance
 - Seed performance

Biotechnology in Use at Sakata

- Molecular markers are an essential tool
 - Reduce costs
 - Allow screening for multiple traits

Reading Molecular Markers Today

Genotyping Each Plant Before Going to the Field – Tray Map

4877	4		Marker: I3/T							48775									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
R/S	S/R	H/H	H/H	H/R	R/S	R/R	S/S	H/R	R/H	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
R/H	H/R	S/S	R/R	S/S	R/H	R/S	R/S	S/S	R/R	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
S/S	H/S	H/H	R/S	R/H	S/S	R/H	H/H	H/H	S/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
H/H	R/H	H/H	R/S	H/S	S/S	R/H	H/R	R/H	H/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
H/H	R/H	S/S	H/H	R/H	S/H	S/S	S/S	S/S	R/H	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
S/S	H/R	H/H	H/H	H/R	R/H	H/H	H/H	S/S	R/R	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
S/S	H/S	H/H	R/H	S/H	H/S	H/H	R/H	R/H	H/R	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
S/S	H/R	H/H	H/H	H/R	R/H	H/H	H/H	S/S	R/R	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
H/H	R/H	H/H	R/S	H/S	S/S	R/H	H/R	R/H	H/H	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S
S/S	H/S	H/H	R/H	S/H	S/S	R/H	H/R	R/H	H/H	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S

DISCARD 38, SAVE 62

Multiple Markers can be utilized

Marker Assisted Selection (MAS)

- We plant what we have room for.
- MAS enables screening before we use up field space.
- Effectively increases size of program without increasing field use.

Exclusion Protocols
SEED TRANSMITTED DISEASE CONCERNS

CUCURBITS

- ACIDOVORAX AVENAE SUBSP AVENAE (BFB)
- CGMMV (CUCUMBER GREEN MOTTLE MOSAIC VIRUS)
- SQUASH MOSAIC VIRUS
- MNSV
- GUMMY STEM BLIGHT

SOLANACEOUS

- TOBAMOVIRUSES
- CLAVIBACTER MICHIGANENSIS (BACTERIAL CANKER)
- VIROIDS (?)
- PEPINO MOSAIC VIRUS
- XANTHOMONAS SPP (BACTERIAL SPOT)

Seed Treatments for research seed

Tomato 1.)10% bleach fruit dip 2.)Muriatic Acid (HCl ~7%/20min): Dissolves pulp/some antimicrobial activity 3.)0.5% NaOCI (10% bleach/40 min): Bacteria mainly 4.)10% Tri Sodium Phosphate (TSP): Tobamoviruses (and PepMV) targeted 5.)Hot water (only if needed)

Seed Treatments for research seed

Cucurbits
1.)10% bleach fruit dip
2.)Fermentation (Pectinase substitute and antimicrobial)
3.)1800ppm Peroxyacetic acid/Hydrogen peroxide (BFB and gummy stem blight)

CUCURBIT SEEDBOURNE DISEASES

Disease	transmission	Best symptom expression	Special concerns	Field sprays or cultural practices	Seed treatment
BFB	Seed, mechanical, water, plant debris	Seedling OR harvest(fruit)	Extreme liability due to economic impact	Copper sprays OR peroxide (i.e. Oxidate)	Peroxyacetic acid (Tsunami)
CGMMV	High Seed transmission, mechanical, soil/water, pollen(?)	2 true leaves* to harvest	Symptoms weak early	Sanitation of workers, transplant grower, water source	Heat, Trisodium phosphate.
Squash Mosaic	Seed, mechanical	true leaves and actively growing	Very stable virus, but surprisingly rare	Sanitation of workers, control of cucumber beetle	
Gummy Stem Blight	Wind blown or splashed spores	All stages	Can become a problem in GH	Misc fungicide applications, cull symptomatic or cracked fruit	Peroxyacetic acid and Thiram

SOLANCEOUS SEED BOURNE DISEASES

Disease	transmission	Best symptom expression	Special concerns	Field sprays or cultural practices	Seed treatment
Tobamoviruses	Seed, mechanical	Symptoms are more obvious with mature plants	Extreme liability due to economic impact	Milk solution as hand dip for GH workers when handling	Tri sodium phosphate
Bacterial canker (Cmm)	Seed, mechanical, water	All stages	Infection can be common in GH's with poor sanitation	Bacteriocides, sanitation	Sodium hypochlorite
Viroids (PSTVd)	Seed, mechanical, insect, pollen(?)	Variable and difficult	Can be a hidden problem. Pollen transmission?	Tools/surfaces sanitized with 1% NaOCl; Aphid control	none
Xanthomonas leaf spot.	Seed, wind blown water droplets, mechanical	All stages	Can become a problem in GH and movement of races	Coppers and peroxide based sprays, Actiguard(?)	Sodium hypochlorite

MAN TOTAL LANS RJohnson@Sakata.com

"Sakata" Now lives at Homosassa Springs

EXCLUSION PROGRAM PROTOCOLS

- GERMPLASM INTRODUCTION PHYTOSANITARY STATUS CHECKLIST (REVIEWED ANNUALLY)
- SEEDLING PRODUCTION AND TRANSPLANT INTRODUCTION PROTOCOL
- BEST MANAGEMENT AND SANITATION PRACTICES (GSPP)
- SEED PROCESSING AND TREATMENT PROTOCOLS
- DISEASE EPIDEMIC CONTAINMENT PROTOCOL

Seed and Seedling Testing Requirements for Managing Seed-borne Diseases in Melon Breeding Program

Revised: Apr. 21, 2017 (initial draft)

	Pathogens of Concern and Requirements						
Source	SqMV	CGMMV	MNSV	Aac	Db		
Florida - old and new	C III I		rd	Visual inspection under normal	For 2017, past increased considered Db negative. Going forward, seed from		
Guamuchil - Research Guamuchil - Production	leaf followed by ELISA of suspect plants. Note: CGMMV and MNSV			transplant growing conditions. Immunostrip testing of suspects (minimum entire tray destroy if Aac detected).	these sources will be Tsunami treated at the prod location. If not done, presumptively treat seed with Tsunami-100 plus fungicide application to seed.		
CA - Colusa, Woodland	symptoms considered hard to determine in seedlings, but risk for these sources considered equally						
CA - Colusa, Woodland	remote.						
Commercially sold lots from				Such lots considered	okay to plant and use		
reputable competitors or cooperators with C of A	utable competitors or perators with C of A		seedling inspection as described above.				
External - Univ/USDA External - other breeders, competitor seed,	ernal - Univ/USDA ernal - other breeders, petitor seed, seedling ELISA		Quarantine SNLS Seedling inspection while growing plants in a conducive environment (procedure development needed)				
cooperators				000	0		

GERMPLASM INTRODUCTION CHECKLIST

- LOCATION OF LOT PRODUCTION: SAKATA EXCLUSION SITE OR ELEVATED RISK LOCATION
- SEED CLASSIFICATION (RESEARCH, PRODUCTION, SALES/COMPETITOR VARIETIES
- DISEASE ASSAY STATUS: CERTIFICATE OF ANALYSIS OR INTERNAL TESTING
 - 10% DESTRUCTIVE ASSAY UNDER HIGHLY CONDUCIVE NON-DESTRUCTIVE GROWOUT OR POOLED SAMPLE

SEEDLING PRODUCTION AND TRANSPLANT INTRODUCTION (NORMAL RISK)

- PHYTOSANITARY UNDERSTANDING WITH 3RD PARTY TRANSPLANT GROWER
 - BUFFERED GH SPACE DEDICATED TO SAKATA ONLY
 - DISPOSABLE OR DEDICATED TRAYS FOR SAH USE ONLY
 - PHYTOSANITARY MEASURES OBSERVED AND BEST MANAGEMENT PRACTICES FOLLOWED (BACTERIA)
 - DELIVERY TRAILER SANITIZED PRIOR TO SHIPMENT
 - CLEAN, ORDERLY, NO SURPRISES
- INSPECTIONS AT FULLY EXPANDED COTYLEDONS, 2 TRUE LEAVES, AND 4 TRUE LEAVES (3RD PARTY INSPECTIONS?)
- DOCUMENTATION AND PHOTOS OF ANY SUSPICIOUS SYMPTOMS AND INQUIRY RESULTS
- RESEARCH TRANSPLANT PRODUCTION ON SITE BY 2018

SEEDLING PRODUCTION AND TRANSPLANT INTRODUCTION (ELEVATED RISK)

- SALINAS PATHOLOGISTS OVERSEE DESTRUCTIVE/NON DESTRUCTIVE TESTING
- 10% OF LOT IS GROWN AND POOLED FOR TESTING OR DESTRUCTIVELY ASSAYED UNDER HIGHLY CONDUCIVE CONDITIONS (INSPECTIONS AT FULLY EXPANDED COTYLEDON, 2 TRUE LEAF, AND 4 TRUE LEAF
- OPTION FOR COMPLETING A (SELF) GENERATION IN SNLS
- PRESUMPTIVE "DRY SEED" TREATMENTS (NOT IDEAL) OR HEAT TREATMENTS

BEST MANAGEMENT AND SANITATION PRACTICES

- BEST MANAGEMENT PRACTICES FOR BACTERIA, FUNGI, AND INSECTS
- NO COMINGLING OF RESEARCH AND PRODUCTION PLANT MATERIAL!
- LIMITED ACCESS TO GROWING AREA/MANDATORY SANITATION OF WORKERS AND VISITORS. NO OFF STATION VEHICLES ALLOWED IN GROWING AREAS WITHOUT DIP/SPRAY DOWN. NO FREE MOVEMENT OF WORKERS OR IMPLEMENTS FROM RESEARCH TO PRODUCTION WITHOUT SANITIZING PROTOCOL
- DETERMINE BEST SANITIZING AGENT FOR EACH SITUATION: POTASSIUM PEROXYMONOSULFATE (1% VIRKONS), (1-0.5%) SODIUM HYPOCHLORITE, QUATERNARY AMMONIUM SALTS (MANY FORMULATIONS), ISOPROPYL ALCOHOL
- 3RD PARTY INSPECTION OF CROP VIA USDA OR AFFILIATE OR INTERNAL JUST BEFORE HARVEST FOR PHYTO PURPOSES
- SAH INTERNAL INSPECTION OF FRUIT AT HARVEST (SIGNOFF) AND DURING EXTRACTION

SEED PROCESSING AND TREATMENT PROTOCOLS

- CUCURBITS (FERMENTATION, TSUNAMI)
- TOMATO (ACID, BLEACH, TSP)
- PEPPER (BLEACH, TSP)
- SANITATION OF PROCESSING AREA AND DRYERS

WE HAVE A PROBLEM! DISEASE CONFIRMATION ONLY 1. SAH PATHOLOGIST INVESTIGATION INITIATED

- 2. SOURCE(S) OF INFECTION ANALYZED
- 3. DOCUMENT SITUATION (PHOTOS/VIDEO)
- 4. PLAN COURSE OF ACTION WHAT GETS DESTROYED
- 5. "SCORCHED EARTH" STRATEGY FOR DECONTAMINATION

ANNUAL REVIEW OF EXCLUSION PROGRAM

- ASSESS NEW DISEASE THREATS (RISK DESIGNATION, NEW EMERGING DISEASES)
- EDUCATION AND TRAINING (NEW EMPLOYEES ARE TRAINED IMMEDIATELY)
- AUDITS (ARE WE DOING WHAT WE AGREED TO DO?)
- ALL SEED MUST BE ENTERED INTO THE SYSTEM!!!