
Geminiviruses, named for their twinned icosahedral 
particles, infect food and fibre crops, ornamental plants 
and weeds and cause substantial crop losses around 
the world. The incidence and severity of geminivirus 
diseases has greatly increased in the past 20 years1,2. 
In Africa and Asia, where geminivirus disease greatly 
affects agriculture, maize streak disease, cassava mosaic 
disease and cotton leaf curl disease have caused complete 
losses in infected fields3–5. Tomato yellow leaf curl disease 
is one of the major viral diseases of tomato worldwide6.

Geminiviruses often occur in disease complexes, and 
individual plants can be infected with multiple viruses7. 
Geminivirus genomes can undergo high levels of muta-
tion, recombination and reassortment to increase viral 
diversity8–11. The development of insecticide resistance 
and the evolution of new vector biotypes, in particular 
whiteflies, have allowed geminiviruses to invade new 
regions and to bring together new combinations of 
viruses in disease complexes2. These properties have 
enabled geminiviruses to adapt rapidly to new hosts and 
environments. This and the global spread of geminivirus 
complexes by human activity and severe weather now 
pose major threats to food security12–14.

Geminiviruses have small DNA genomes with lim-
ited coding capacities. They rely heavily on host cellu-
lar machineries and interact with a wide range of plant 
proteins and processes during infection. Geminiviruses 
reprogramme the cell cycle of infected cells to induce the 
replication of both viral and plant chromosomal DNA. 
They change host gene expression patterns, inhibit cell 
death pathways, alter macromolecular trafficking and 
interfere with cell signalling and protein turnover to 
redirect or block host defences and hormone signalling. 

In addition, geminiviruses encode multiple silencing 
suppressors that interfere with plant small interfering 
RNA (siRNA) production and alter plant DNA methyla-
tion and microRNA (miRNA) pathways, often causing 
developmental abnormalities. Here, we review the recent 
progress made in understanding geminivirus–plant 
interactions and their consequences on viral infection 
and propagation. We highlight how a small number of 
geminivirus proteins interacts with and modulates host 
proteins to alter a large array of plant developmental and 
defence processes. Supplementary information S1 (table) 
lists the known geminivirus–plant interactions and the 
viral and plant species for which the interactions have 
been demonstrated.

Virus–host interactions and models to study them
Geminiviruses are classified by the International 
Committee on Taxonomy of Viruses into seven genera 
(Begomovirus, Mastrevirus, Curtovirus, Becurtovirus, 
Eragrovirus, Topocuvirus and Turncurtovirus) on the 
basis of their genome organization and insect vectors. 
All geminivirus genomes occur as single-stranded DNA 
(ssDNA) that is packaged into virions15 and replicative 
double-stranded DNA (dsDNA) that is transcribed in 
the nucleus of infected plant cells16. BOX 1 illustrates the 
genomes for three geminivirus genera. Their genomes 
consist of one (monopartite) or two (bipartite) DNA 
components that encode 5–7 proteins involved in viral 
replication, movement, transmission and pathogen-
esis. Some viral proteins, such as replication initiator 
protein (Rep), are highly conserved across the family 
Geminiviridae17, whereas others, such as coat protein 
(CP; which determines insect vector specificity18), confer 
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unique properties to a given genus. The viral proteins 
are multifunctional, and some have evolved to serve 
different functions for different viruses even between 
closely related species. Many begomoviruses associate 
with satellite DNAs that encode proteins which enhance 
pathogenesis19. The major functions of the viral proteins 
are summarized in BOX 1.

Begomoviruses, which constitute the largest genera, 
initiate infection when a whitefly carrying the virus 
feeds on the sap transported through the phloem of a 
healthy leaf and transmits virions to phloem-associated 
cells (FIG. 1). In the plant cell, viral ssDNA is released 
from the virion and becomes double stranded when 
host DNA polymerases use RNA oligonucleotides 
to prime complementary-strand synthesis20,21. The 
dsDNA is transcribed by host RNA polymerase II, 
allowing the production of Rep. This protein initi-
ates viral replication, which occurs by a combination 
of rolling-circle replication and recombination-dependent 
replication22. Nascent circular ssDNA can be converted  
to dsDNA to re-enter the replication cycle or can be 
packaged into virions after CP is produced. The infection 
is propagated inside the plant by the movement of viral 
DNA out of the nucleus into the next cell or the phloem 
through the action of two viral movement proteins, 
nuclear shuttle protein (NSP) and movement protein  
(MP)23,24 (BOX 2).

Geminivirus infection is associated with plant stunt-
ing and a failure of reproductive organs to develop nor-
mally. Symptoms typically include curled, deformed 
leaves with a yellow mosaic or mottled pattern, and 
sometimes vein swelling and enations25. The symptoms 
reflect extensive changes in host transcription that lead 
to alterations in cellular homeostasis and developmental 
processes. The global nature of these changes is illus-
trated by transcriptome profiling of infected plants, 
which identified thousands of differentially expressed 
genes involved in diverse processes ranging from 
defence and programmed cell death to DNA replica-
tion and cell cycle control26,27. Infection also leads to the 
misregulation of host miRNAs linked to developmen-
tal transitions and hormone signalling28,29. The interac-
tions of geminiviruses with their insect host is less well 
understood, but recent studies indicate that in this case 
too virus-mediated changes in signalling and defence 
pathways occur (BOX 3). 

Plant DNA synthesis and cell cycle machinery
DNA replication occurs in three phases: initiation, 
elongation and termination. Geminivirus Rep catalyses 
initiation and termination of rolling-circle replication 
by cleaving and ligating viral DNA at a conserved site 
within the viral genome30. Similarly to many small DNA 
viruses, geminiviruses do not encode their own DNA 
polymerases and instead depend on host polymerases 
and associated factors (together termed the host repli-
some) for viral DNA synthesis during the elongation 
step31. In healthy plants, the availability of the host 
replisome is tightly regulated by cell cycle and develop-
mental controls, which must be reprogrammed before 
geminiviruses can replicate their genomes.

Box 1 | Geminivirus genomes and viral proteins

The family Geminiviridae includes three well-characterized genera: Mastrevirus, 
Curtovirus and Begomovirus16. Mastreviruses are transmitted by leafhoppers, have a 
single genome component, infect both monocotyledonous and dicotyledonous plants, 
and are found primarily in the Old World. Curtoviruses are also transmitted by 
leafhoppers and have one genomic DNA, but infect only dicots in the New World. 
Begomoviruses, which constitute the largest genus, are transmitted by whiteflies and 
are found in the Old and New World. They can have monopartite genomes or bipartite 
genomes designated as DNA-A and DNA-B. Many monopartite begomoviruses are 
associated with alphasatellites or betasatellites.

Geminivirus genomes (see the figure) are arranged with divergent transcription units, 
and a 5′ intergenic region contains the origin for rolling-circle replication (the lollipop) 
and two RNA polymerase II promoters121. Coat protein (CP) forms the viral capsid and 
mediates vector transmission18. CP also functions as the nuclear shuttle protein (NSP) for 
monopartite viruses122. All monopartite and some bipartite viruses encode small ORFs 
upstream of the CP gene. The V2 and AV2 proteins function as anti-defence proteins to 
inhibit post-transcriptional gene silencing (PTGS)112,114. V2 also provides the movement 
function for monopartite viruses122. Replication initiator protein (Rep) initiates viral 
replication121. Mastreviruses express Rep from a spliced mRNA and RepA from the 5′ ORF123. 
Curtoviruses and begomoviruses encode Rep in a single ORF and do not encode RepA. 
Curtoviruses and begomoviruses encode three additional ORFs. Transcriptional activator 
protein (TrAP; and the related C2 protein) interferes with transcriptional gene silencing 
(TGS) and PTGS40,84. TrAP is also a transcription factor required for CP and NSP expression 
by bipartite begomoviruses124. Replication enhancer protein (REn; also known as C3) is 
involved in viral replication32. C4 (or AC4 in some viruses) counteracts PTGS113,114. 
Bipartite begomoviruses encode their movement proteins, NSP and MP, on the DNA-B 
component23,24. Betasatellites of begomoviruses encode βC1, which counteracts TGS104, 
and alphasatellites encode their own Rep, which is also an anti-silencing protein125.
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The viral replisome. Rep, the only viral protein that is 
essential for replication, is likely to have a key role in 
the recruitment and assembly of the viral replisome, a 
complex that includes viral proteins and host factors 
involved in DNA replication, repair and other nuclear 
functions. The viral replication enhancer protein (REn; 
also known as C3), which greatly enhances begomo-
virus and curtovirus DNA accumulation and interacts 
with Rep and host replication factors32, is also likely to 
be part of the viral replisome. Both Rep and REn bind to 
proliferating cell nuclear antigen (PCNA)33,34, the pro-
cessivity factor for host DNA polymerase-δ. PCNA is 
highly conserved across eukaryotes and interacts with 
a variety of proteins involved in cell cycle regulation, 

DNA replication and DNA repair. Rep also interacts 
with the large subunit of the replication factor C com-
plex, which loads PCNA onto DNA, and the 32-kDa 
subunit of replication protein A, which binds ssDNA35,36. 
In addition, Rep binds to RAD54, which is involved in 
homologous recombination and might have a role in 
viral replication mediated by recombination-dependent 
replication37. Interactions with RAD54 and PCNA have 
opposite effects on Rep activity in vitro and potentially 
modulate rolling-circle replication and recombination-
dependent replication in vivo34,37.

Geminivirus dsDNA forms a minichromosome with 
11–12 nucleosomes38. Rep binds histone H3 (REF. 39), and 
this interaction might be involved in displacing nucleo-
somes from viral DNA to allow access to the replication 
machinery and/or prevent methylation of H3 lysine 9 
(this methylation is thought to impair viral replica-
tion)40. Rep also binds a mitotic kinesin39 and minichro-
mosome maintenance protein 2 (MCM2)41, which is a 
subunit of the MCM complex (the eukaryotic replicative 
DNA helicase). The functions of these Rep interactions  
during viral replication are not known.

Reprogramming plant cell cycle controls. Geminiviruses 
typically infect leaf cells or vascular tissues that have 
exited the cell cycle and do not express host DNA poly-
merases. To overcome this barrier, geminiviruses alter 
host transcriptional controls to induce the production of 
the host DNA synthesis machinery31. This was first dem-
onstrated for PCNA, which accumulates specifically in 
virus-positive cells of infected leaves42,43. Host transcrip-
tome profiling showed that geminivirus infection pref-
erentially activates cell cycle-associated genes expressed 
during S/G2 phase and inhibits genes that are active in 
M/G1 phase26. Several core cell cycle genes associated 
with cell cycle re-entry and the late G1, S and early G2 
phases are upregulated, whereas those linked to the 
early G1 and late G2 phases are downregulated, thereby 
facilitating the transition of infected cells into S phase 
— the stage at which DNA replication occurs during the 
cell cycle. In plants, activation of DNA replication and 
core cell cycle genes is unique to DNA viruses belong-
ing to the families Geminiviridae and Nanoviridae (the 
latter being another important family of plant viruses 
with ssDNA genomes that are replicated by host DNA 
polymerases)26,44.

A key regulator of the plant cell cycle is retinoblastoma-
related protein (RBR). Similarly to its animal counterpart, 
plant RBR controls the cell cycle, stem cell maintenance, 
cell specification and differentiation45. RBR interacts 
with E2F transcription factors to suppress the expression 
of genes encoding host replication proteins. During a 
normal cell cycle, RBR is regulated by phosphorylation, 
which disrupts E2F binding and leads to transcription 
of E2F-target genes in late G1 phase in preparation for 
S phase45. Inactivation of RBR to allow pre-emptive entry 
into S phase is a conserved feature of many small DNA 
viruses that infect plant and animal hosts.

Geminiviruses disrupt RBR–E2F complexes through 
RepA, Rep and REn binding to RBR46,47 (FIG. 2). RepA, 
which is characteristic of mastreviruses (BOX 1), contains 

Figure 1 | The begomovirus life cycle. Infection begins in a plant cell when viral 
single-stranded DNA (ssDNA) is released from virions and copied to generate 
double-stranded DNA (dsDNA). The dsDNA, which assembles with nucleosomes, is 
transcribed by host RNA polymerase II, allowing production of replication initiator 
protein (Rep). Rep initiates rolling-circle replication by introducing a nick into a viral 
dsDNA molecule to generate a free 3′-hydroxyl end that primes ssDNA synthesis, leading 
to displacement of the parental strand (inset). The released ssDNA is converted to dsDNA 
to re-enter the replication cycle. Viral replication transitions to recombination-depend-
ent replication, which is initiated by homologous recombination between a partially 
replicated ssDNA and a closed, circular dsDNA to form a looped molecule that serves as 
a template for both ssDNA and dsDNA synthesis (inset). Later in infection, Rep represses 
its own transcription, leading to activation of transcriptional activator protein (TrAP) 
expression, which in turn activates coat protein (CP) and nuclear shuttle protein (NSP) 
expression. Circular ssDNA can then be encapsidated by CP into virions, which are 
available for whitefly acquisition. NSP binds to viral DNA and moves it across the nuclear 
envelope, where movement protein (MP) traffics it across a plasmodesma. It is not known 
whether viral DNA moves as ssDNA versus dsDNA or as a linear versus a circular molecule.
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single-stranded and 
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Leaf-like structures that form 
on leaves during some viral 
infections.

a canonical LXCXE RBR-binding motif that is also pre-
sent in oncoproteins of mammalian viruses and the 
nanovirus cell cycle link (Clink) protein44,48. By contrast, 
begomovirus and curtovirus Rep proteins bind RBR 
through a unique motif 49. Mutation of these motifs in 
RepA and Rep results in milder symptoms and reduced 
viral DNA accumulation46,50. In both cases, the distri-
bution of virus-infected cells changes, and the mutant 
viruses are more closely associated with vascular bun-
dles than wild-type viruses. REn–RBR binding might 
be involved in overcoming RBR inhibition in mature 
leaves51,52. REn also interacts with Solanum lycopersicum 
NAC1 (NAC1), which is a host transcription factor that 

accumulates in virus-positive cells of infected leaves. 
Ectopic expression of the target gene of NAC1 increases 
viral DNA levels53.

The endocycle and viral DNA replication. During early 
leaf development, cells are programmed to undergo a 
mitotic cell cycle in which S phase is coupled to mitosis. 
Later in development, many leaf cells transit to an endo-
cycle, a variation of the cell cycle that is characterized 
by increased ploidy and cell expansion without division. 
Unlike mammalian DNA tumour viruses, geminiviruses 
generally do not induce cell proliferation. Instead, many 
geminiviruses and nanoviruses induce plant cells to 
re-enter the endocycle and replicate both viral and plant 
chromosomal DNA26,44,54. Other geminiviruses induce 
the mitotic cycle but cause the cell to arrest in prophase55, 
and some cause vein swelling and enations, which are 
indicative of the mitotic cell cycle56,57. The different types 
of geminivirus interactions with the plant cell cycle are 
shown in FIGURE 2.

As mentioned above, interactions with RBR seem 
to be conserved between geminiviruses, but there are 
varied consequences of these interactions on G1 cyc-
lins and their cyclin-dependent kinase (CDK) partners, 
which act downstream of RBR to control the transition 
into S phase. For example, an endocycle-inducing bego-
movirus reduces expression of cyclin D3 family mem-
bers, which regulate CDKs during G1 phase and inhibit 
the endocycle; ectopic expression of a cyclin D3 leads to 
resistance against the same virus26. By contrast, a curto-
virus C4 protein that induces hyperplasia activates the 
degradation of cyclin kinase inhibitors, thereby promot-
ing mitosis58. Differences in the interactions of viral pro-
teins with host cell cycle controls determine whether a 
particular virus activates the endocycle or the mitotic 
cycle, but these interactions might also be influenced by 
the type of plant cell in which they occur, with different 
cell types in the same leaf responding differently44,46,50,55. 
They might also be influenced by satellite proteins such 
as βC1, which alters leaf developmental controls to 
induce cell division59.

Box 2 | Geminivirus movement and host proteins

The geminivirus proteins nuclear shuttle protein (NSP) and movement protein (MP) 
mediate viral DNA movement into and out of the nucleus and between cells126. Most of 
our knowledge of NSP and MP comes from studies of bipartite geminiviruses, and 
several host partners have been identified for them (see Supplementary information S1 
(table)). Less is known about the movement proteins of monopartite geminiviruses, in 
which coat protein (CP) acts as the NSP, whereas MP function is mediated by V2 alone 
or in a complex with C4 (REF. 127).

NSP interacts with histone H3, raising the possibility that viral DNA moves as  
a minichromosome128. NSP also binds to and inhibits an Arabidopsis thaliana 
acetyltransferase (AtNSI)129. One model is that viral double-stranded DNA is packaged 
into nucleosomes and further compacted by NSP binding to the amino-terminal tail  
of H3 (REF. 128). Compaction might be enhanced by NSP-mediated suppression of 
histone acetylation by AtNSI130. H3 also interacts with MP and has been detected in 
plasmodesmata of infected cells128, suggesting that viral DNA moves between cells in 
association with nucleosomes. Some geminiviruses form ER tubules in sink tissue, and 
these tubules might accommodate a compacted minichromosome131.

An NSP-interacting GTPase (NIG) associated with the exterior of the nuclear envelope 
might facilitate NSP transit into the cytosol, probably through the nuclear pore132. The 
NSP–DNA complex then moves to the cell periphery through interaction with MP24. 
Viral DNA might be transferred to MP through a mechanism involving NIG-catalysed 
GTP hydrolysis133. Alternatively, NIG might facilitate the interaction of MP with an  
NSP–DNA complex that moves through plasmodesmata, which provides a mechanism 
for movement of viral DNA into the nucleus of the next cell. MP interacts with a 
chloroplast heat shock cognate 70 protein (HSC70) and with a synaptotagmin protein 
(SYTA)134,135. Downregulation of both proteins restricts or delays infection71,134,135, 
suggesting that geminiviruses recruit host transport systems for their movement126.

Box 3 | Geminivirus interactions with their insect vector

Much of our knowledge of geminivirus–vector interactions comes from studies of begomoviruses and their Bemisia tabaci 
(whitefly) vector. Whiteflies acquire virions during feeding on the phloem of an infected plant. The virions move through 
the alimentary canal into the whitefly midgut, where they enter the haemolymph and transit to the salivary glands for 
transmission during the next feeding cycle136. Viral coat proteins (CPs) bind to GroEL proteins encoded by endosymbionts 
in the whitefly gut137 and to the whitefly-encoded heat shock protein 16 (HSP16)138. Interactions with GroEL and HSP16 
might stabilize the virion during passage through the gut and/or facilitate its transfer across the gut epithelia into the 
haemolymph. Both possibilities are consistent with data showing that GroEL isoforms produced by different 
endosymbionts affect transmission efficiency139.

Begomovirus–whitefly interactions depend on the virus, the vector biotype and the endosymbionts of the vector139. 
Transcriptome analysis of virus-carrying and non-carrying whiteflies uncovered more than 1,600 genes that are differentially 
expressed in response to begomovirus acquisition140, representing many different pathways, including the cell cycle, protein 
synthesis and lipid metabolism. Genes involved in the immune response, including all of the autophagy genes and most genes 
associated with lysosome function, are activated in virus carriers. By contrast, genes involved in apoptosis and signal 
transduction of the immune response are downregulated. These results are consistent with whiteflies mounting a defence 
against begomovirus invasion and the virus counteracting this activation of the immune response. The balance of these two 
forces might differ for different begomoviruses and whitefly biotypes, providing an explanation for the differences observed 
in transmission efficiency and vector specificity.
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Genotoxic stress. Transcriptome profiling revealed that 
geminivirus infection upregulates the expression of host 
genes associated with genotoxic stress, including genes 
encoding DNA repair and recombination proteins26. 
This upregulation might occur in response to nicked  
viral DNA and ssDNA, which could be perceived as dam-
aged DNA. The recruitment of the host DNA recom-
bination machinery also enables viral amplification 
mediated by recombination-dependent replication22. 
In one possible scenario, very early events in infection 
cause Rep–RBR binding, leading to reprogramming of 
cell cycle controls, the accumulation of the host replica-
tion machinery and the onset of rolling-circle replication. 
Accumulation of viral DNA replication products and 
intermediates then triggers a genotoxic response and the 
synthesis of host repair proteins, resulting in a switch to 
recombination-dependent replication.

Plant signalling pathways
Protein kinases and their crosstalk with hormone sig-
nalling pathways have crucial roles in plant growth and 
development, as well as in pathogen recognition and 
the defence response. Geminiviruses interact with sev-
eral such pathways to recruit host processes for viral 
propagation and to interfere with host defences.

Receptor-like kinases. Some plant receptor-like kinases 
(RLKs) sense viral pathogens and trigger an antiviral 
defence response. The best characterized RLKs involved 
in geminivirus infection are the three closely related leu-
cine-rich repeat (LRR) RLKs designated NSP-interacting 
kinase 1 (NIK1), NIK2 and NIK3 (REF. 60). NIKs are 
membrane proteins that undergo autophosphoryla-
tion and can phosphorylate exogenous substrates. NSP 
binds to the NIK kinase domain and interferes with its 
autophosphorylation, which is required for kinase activ-
ity60,61. NIK proteins are thus unable to phosphorylate 
their downstream effector, the ribosomal protein RPL10, 
and induce its translocation to the nucleus, where it is 
thought to interfere with viral infection62. The activi-
ties of NIK proteins and RPL10 correlate with symptom 
development; overexpression of these proteins attenu-
ates and delays symptoms, whereas loss of their function 
increases susceptibility63. The signal that activates NIK 
proteins and their targets downstream of RPL10 are not 
known64.

GRIK–SNRK1 kinase cascade. Rep interacts with two 
closely related protein kinases — geminivirus Rep-
interacting kinase 1 (GRIK1) and GRIK2 (REFS 39,65). 
The GRIKs, which are regulated by the ubiquitin 

Figure 2 | Reprogramming plant cell cycle and methyl cycle controls. The diagram shows virus–host interactions that are 
necessary to create a cellular environment that is favourable for geminivirus DNA replication. Geminiviruses can infect plant 
cells in the G1 phase (2C DNA content) of the mitotic cycle or in the G phase of the endocycle (when the cell has a 4C DNA 
content) and induce them to enter the S phase. Replication initiator protein (Rep) and replication enhancer protein (REn) 
interact with and inhibit retinoblastoma-related protein (RBR) to relieve inhibition of E2F transcription factors and activate the 
expression of plant genes encoding host DNA polymerases and accessory factors that are required for viral replication. These 
interactions reprogramme cell cycle controls and induce mature plant cells to progress through the endocycle or the mitotic 
cell cycle. Rep also activates the expression of transcriptional activator protein (TrAP; known as C2 in some viruses), which 
interacts with adenosine kinase (ADK) and S-adenosyl methionine decarboxylase 1 (SAMDC1) to inhibit the plant methyl  
cycle. The protein βC1 also interferes with the methyl cycle through its interactions with S-adenosyl homocysteine hydrolase 
(SAHH). Suppression of the methyl cycle facilitates geminivirus replication by reducing viral DNA methylation. The geminivirus 
Rep-interacting kinase (GRIK)–SNF1-related protein kinase 1 (SNRK1) protein kinase cascade links Rep to suppression of the 
methyl cycle. Figure is modified, with permission, from REF. 26 © (2008) American Society of Plant Biologists.
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proteasome pathway, accumulate in young plant tissues, 
cultured cells and geminivirus-infected cells. They are 
thought to be involved in one or more processes that 
are important for both early plant development and 
geminivirus infection. The GRIKs are upstream activa-
tors of SNF1-related protein kinase 1 (SNRK1)66 — a key 
regulator of plant metabolism that is involved in devel-
opment and responses to abiotic and biotic stresses. 
Plants overexpressing SNRK1 show symptoms later and 
contain less viral DNA than wild-type plants, whereas 
plants silenced for SNRK1 expression develop symptoms 
earlier and accumulate more viral DNA than wild-type 
plants. SNRK1 binds to viral transcriptional activator 
protein (TrAP; known as C2 in some viruses) and the 
satellite protein βC1 (REFS 67,68). βC1 is phosphorylated 
by SNRK1, and a βC1 phosphomimic delays infection68, 
indicating that SNRK1 phosphorylation of βC1 interferes 
with infection.

The roles of GRIK and SNRK1 during geminivirus 
infection are not clear. SNRK1 might be part of the 
host defence response, and its defence activity might 
be counteracted by TrAP/C2. Conversely, the GRIK–
SNRK1 cascade might be activated by infection to ensure 
adequate energy and nutrient supplies to support viral 
and host DNA replication. Alternatively, the cascade 
might serve both functions in a dynamic, ordered infec-
tion process in which Rep expression precedes and is 
required for TrAP/C2 expression, or it might provide a 
link between viral replication and the host methyl cycle, 
which is inhibited during infection to prevent methylation 
of viral DNA (FIG. 2).

Shaggy-related kinases. Shaggy-related kinases are 
involved in various plant developmental processes, 
including cell division and elongation, in part through 
their interactions with the brassinosteroid signalling 
pathway. Viral C4 (or AC4 in some viruses) inter-
acts with shaggy-related kinases69,70, and silencing 
the expression of shaggy-related kinases delays infec-
tion71. A curto virus C4 protein can be phosphoryl-
ated by the Arabidopsis thaliana shaggy-related kinase 
BRASSINOSTEROID-INSENSITIVE 2 (BIN2), which 
is a negative regulator of brassinosteroid signalling, 
whereas an AC4 protein from a bipartite begomovirus 
is a poor substrate, even though it binds to BIN2 (REF. 69). 
This difference might explain why ectopic expression of 
C4 but not AC4 proteins induces symptoms in plants69,70. 
Consistent with this difference, a curtovirus C4 protein 
induces hyperplasia by suppressing brassinosteroid 
signalling72, whereas an AC4-containing begomovirus 
upregulates expression of brassinosteroid target genes26. 
One scenario is that AC4 proteins of bipartite viruses 
bind to and interfere with BIN2, leading to the activation 
of the brassinosteroid pathway, whereas BIN2-mediated 
phosphorylation of the C4 proteins of monopartite 
viruses prevents BIN2 inactivation and thus maintains 
inhibition of the brassino steroid pathway. It is not clear 
why geminiviruses interface differently with shaggy-
related kinases and the brassinosteroid pathway, but this 
difference underscores the importance of not assuming 
that all virus–host interactions are conserved.

Hormone signalling pathways. Geminiviruses inter-
act with diverse plant hormone pathways, such as the 
salicylic acid, ethylene and jasmonic acid pathways, in 
addition to the brassinosteroid pathway described above. 
They activate the salicylic acid and ethylene pathways, 
which both participate in the host defence response26, 
and plants with increased salicylic acid levels or higher 
expression of components in this pathway are resistant 
to infection26,73,74. Genes in the jasmonic acid pathway are 
generally suppressed during infection26. Ectopic expres-
sion of some viral proteins can activate or inhibit the 
jasmonic acid pathway, but the biological relevance of 
these changes is not known59,75,76.

Geminiviruses also interact with the cytokinin and 
auxin pathways, which promote cell proliferation and 
modulate differentiation in plants. Infection activates 
the expression of a rapidly responding auxin-inducible 
gene57 and of primary cytokinin-responsive genes77. 
Activation of cytokinin-responsive genes might result 
from TrAP/C2-mediated inhibition of adenosine kinase, 
which phosphorylates cytokinins and converts them to 
their low-activity nucleotide forms78. Ectopic expres-
sion of TrAP/C2 increases the expression of primary 
cytokinin-responsive genes, and the application of exog-
enous cytokinin enhances susceptibility to infection77. 
Inhibition of adenosine kinase during infection might 
enhance the levels of bioactive cytokinin and thereby 
facilitate the re-establishment of DNA replication  
competency in infected plant cells.

Plant cell death pathways. Transient expression of some 
viral proteins, such as Rep, V2 and NSP, can lead to cell 
death79–81. Rep binding to RBR can trigger the death of 
mature plant cells82, but it is not known how V2 or NSP 
induce host cell death. C2 has been shown to block cell 
death induced by V2 and NSP83, but has also been asso-
ciated with severe symptoms and cell death81,84. These 
conflicting results might reflect differences between 
viral species and/or limitations of transient expression 
assays that characterize individual viral proteins outside 
the infection process. Infected plants typically do not 
show phenotypic evidence of senescence or localized 
cell death42, even though many host genes associated 
with cell death are upregulated26, indicating that gemini-
viruses effectively counteract the activation of cell death 
pathways during infection.

Ubiquitylation and ubiquitylation-like pathways
Protein modifications by ubiquitin and ubiquitin-like 
proteins are post-translational events that modulate 
protein function and regulate many plant processes, 
including development, the cell cycle and responses to 
abiotic and biotic stresses85,86. Ubiquitin is covalently 
linked to lysine residues in the target protein through 
an enzymatic cascade comprising an E1 ubiquitin- 
activating enzyme, an E2 ubiquitin-conjugating enzyme 
and an E3 ubiquitin ligase, which binds to the substrate 
and confers specificity. Sumoylation, which conju-
gates small ubiquitin-like modifier proteins (SUMO), 
requires its own set of related E1, E2 and E3 enzymes. 
Polyubiquitylation targets proteins to the proteasome for 
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degradation, whereas monoubiquitylation or sumoylation 
can alter protein activities, subcellular localization and/or 
interaction partners. Some viral proteins can be modified 
by ubiquitin and ubiquitin-like proteins, and some can 
function as enzymes in the ubiquitylation pathway87.

Geminiviruses alter the ubiquitin and ubiquitin-
like protein machineries to achieve a full infection 
(FIG. 3). Infection is impaired when there is a reduction 
in the expression of ubiquitin-like modifier-activating 
enzyme 1 (UBA1), RING-H2 group F2A (RHF2A; which 

is an E3 ubiquitin ligase), S-phase kinase-associated 
protein 1 (ASK2; also known as SKP1-like 2) or COP9 
signalosome 3 (CSN3; which is derived from constitutive 
photomorphogenic 9)71. Infection protects some unsta-
ble host proteins from degradation, including GRIK and 
S-adenosyl methionine decarboxylase 1 (SAMDC1), the 
latter being a key enzyme in polyamine biosynthesis that 
decarboxylates S-adenosyl methionine to reduce the 
availability of methyl groups for DNA methylation65,88. 
These observations established the functional impor-
tance of interactions with the ubiquitin pathway for 
geminivirus infection.

Interactions between geminivirus proteins and 
components of ubiquitin and ubiquitin-like protein 
pathways have been reported (FIG. 3). βC1 binds to the 
Solanum lycopersicum E2 enzyme ubiquitin-conjugating 
enzyme 3 (UBC3), reducing the global accumulation of 
polyubiquitylated proteins and causing strong symp-
toms89,90. C2 proteins interact and interfere with the CSN 
complex, which normally removes RUB from cullin 1 
(CUL1) and thereby might redirect C2 ubiquitylation by 
collectively targeting a broad range of E3 SKP1, CUL1, 
F-box containing (SCF) ligases through modification 
of their rubylation status75. Given that SCF ligases are 
key regulators of many cellular processes, the capac-
ity of geminiviruses to hijack these complexes repre-
sents a powerful strategy for modulating host function. 
Accordingly, overexpression of C2 alters several plant 
hormone responses regulated by the CUL1-based SCF 
ubiquitin E3 ligases75.

The C4 proteins of some curtoviruses and begomo-
viruses might induce plant cell proliferation by activat-
ing expression of a host RING finger protein (RKP), 
which targets cyclin kinase inhibitors for proteosomal 
degradation58. The nanovirus Clink protein is an F-box 
protein that binds to both RBR and SKP1 (a CUL1 adap-
tor protein), suggesting that Clink alters ubiquitylation 
to affect cell cycle regulation91.

Rep interacts with the E2 enzyme SUMO-conjugating 
enzyme 1 (SCE1)92. Silencing SCE1 or altering Rep–
SCE1 interaction reduces the accumulation of viral 
DNA, suggesting that this interaction is required for 
viral replication71,92. Transient Rep expression modifies 
the sumoylation state of selected host proteins that might 
have roles in viral replication93.

Plant silencing pathways
RNA silencing is an adaptive defence response that uses 
siRNAs to target viruses and transposons. In turn, viruses 
suppress this response by using anti-silencing proteins, 
called viral suppressors of RNA silencing (VSRs), to 
interfere at various steps in the silencing response. 
Because of their nuclear localization and the resemblance 
of their genes to engineered transgenes, which also have 
short promoters with high activity and often lack introns, 
geminiviruses offer unique opportunities to understand 
how plants recognize and defend against foreign DNA.

Geminivirus induction of silencing defence responses. 
All silencing pathways involve cleavage of dsRNA into 
siRNAs by Dicer-like proteins (DCLs) (FIG. 4a). Different 

Figure 3 | Modulation of ubiquitylation and ubiquitylation-like pathways. The diagram 
shows interactions between geminivirus proteins (grey) and components of the ubiquitin 
and ubiquitin-like protein (Ub/Ubl) pathways. Modification of a substrate (S) requires  
the activating (E1) and conjugating (E2) enzymes and usually an E3 ligase that confers 
specificity. In plants, the multisubunit cullin RING ligases (CRLs) for ubiquitin constitute  
the most abundant family of E3 ligases. They are formed by the RING subunit RBX1, which 
binds to E2, and a substrate adaptor formed by S-phase kinase-associated protein 1 (SKP1) 
and an F-box (FB) protein in the cullin 1 (CUL1)-based group ligases. CRL activity is 
regulated by a cycle of covalent attachment and removal of the ubiquitin-like protein  
RUB, which is required for robust CRL activity. The constitutive photomorphogenesis 9 
signalosome (CSN) complex catalyses derubylation of cullins. Ubiquitin-modified proteins 
can be degraded by the 26S proteasome. Ub/Ubl modification can also regulate the 
activity of a target protein or alter its subcellular location, which can be reversed by 
deubiquitylating enzymes (DUBs). Rep, replication initiator protein.
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▶DCLs reside in different parts of the cell, and all four 
A. thaliana DCLs are potentially active during gemini virus 
infections94. In the nucleus, 24-nucleotide (nt) siRNAs are 
produced by DCL3 and loaded onto ARGONAUTE 4 
(AGO4) to direct DNA methylation. This methylation 
of promoter regions to interfere with gene expression 
is called transcriptional gene silencing (TGS). In post-
transcriptional gene silencing (PTGS), mRNA is targeted 
by the RNA-induced silencing complex (RISC) for deg-
radation or translational arrest. The versions of RISC 
that are most active against plant viruses contain AGO1 
and AGO2, which are primed with 21- or 22-nt siRNAs  
generated by DCL4 or DCL2, respectively95,96.

Unlike RNA viruses, geminivirus infections are 
associated with abundant amounts of 24-nt siRNAs97. 
Methylation of viral DNA can occur along the entire 
genome, although the relative distribution varies in dif-
ferent virus–host combinations97–100. Analysis of siRNA 
profiles localized 24-nt siRNAs primarily to intergenic, 
promoter-containing regions for two geminiviruses 
in their natural hosts but to coding regions for a third 
virus infecting A. thaliana94,97,98. In vitro methylation of 
viral replicons before their introduction into plant cells 
reduces viral DNA production 5–20-fold but results in 
a population of non-methylated progeny DNAs101. Only 
linear, heterogeneous viral DNA, which represents non-
productive viral replication, is methylated in infected 
leaves102. Thus, geminiviruses might escape methylation 
by ‘resurrecting’ unmethylated DNA during viral repli-
cation and/or through the action of geminivirus VSRs 
inhibiting the host methylation pathway.

There is abundant evidence for multiple VSRs 
affecting the plant methyl cycle, and their activi-
ties are unique to geminiviruses (FIGS 2,4b). TrAP/
C2 proteins interact with and inactivate host adeno-
sine kinase (ADK), which is required for synthesis of 
S-adenosyl methionine (SAM)103. Curtovirus C2 also 
interacts with SAMDC1 to promote SAM decarboxy-
lation88. The inactivation of ADK and stabilization of 
SAMDC1 both affect the methyl cycle, resulting in a 
reduction of DNA methylation and in the suppression 
of TGS. βC1 interacts with S-adenosyl homocysteine 
hydrolase (SAHH), a methyl cycle enzyme that is also 
required for TGS104. In addition to VSRs affecting the 
methyl cycle, Rep and C4 downregulate DNA methyl-
transferase 1  (MET1) and chromomethylase 3 (CMT3) 
(two genes that are necessary for the maintenance  
of methylation)105, which might be necessary to gener-
ate methylation-free viral DNA templates in a cell with  
activated silencing pathways.

The ability of TrAP/C2 to directly prevent methyla-
tion was established in experiments showing that a viral 
replicon carrying a TrAP/C2 mutation is methylated dur-
ing infection and associated with a recovery phenotype 
in wild-type plants but not in ago4 mutants, which are 
impaired for DNA methylation40. Increased viral DNA 
methylation has also been reported for other gemini-
viruses associated with recovery phenotypes40,98,106. It is 
not known why only some gemini viruses allow recovery, 
or whether DNA methylation and VSRs are always the 
primary determinants of recovery.

Role of RDRs in geminivirus infections. Primary siRNAs, 
which are produced directly from dsRNA in the absence 
of a host-encoded RNA-dependent RNA polymerase 
(RDR), comprise the vast majority of siRNAs in the only 
geminivirus infection analysed to date100. Nevertheless, 
mutation of RDR6 leads to a modest increase in viral 
DNA, suggesting that secondary siRNAs are also impor-
tant94,100,107. Secondary siRNAs, which are produced by 
RDRs, amplify the silencing response and have a crucial 
role in defence against RNA viruses95,96,108. They are also 
involved in long-distance silencing109,110, which moves 
ahead of virus spread and could be important for the 
methylation associated with recovery. The only viral 
infection that has been profiled in rdr mutants did not 
show recovery100, and it will be important to ask whether 
secondary siRNAs are more abundant in infections that 
undergo recovery.

Figure 4 | Silencing pathways targeting geminiviruses.  
a | Primary small interfering RNAs (siRNAs). After 
bidirectional transcription of viral DNA, mRNA is cleaved 
at the polyA site and polyadenylated for nuclear export. 
Profiles of viral primary siRNAs produced in a geminvirus-
infected RNA-dependent RNA polymerase (RDR) 
triple-mutant plant demonstrated that Dicer-like 2 
(DCL2), DCL3 and DCL4 are active, but it is not clear how 
their double-stranded RNA (dsRNA) substrates are made. 
If it was by readthrough transcription, most siRNAs would 
map to the overlapping 3ʹ ends, but this is not the case98. 
Nevertheless, DCL3 cleaves dsRNA to produce siRNAs  
for the methylation of promoters (transcriptional gene 
silencing (TGS)) or siRNAs targeting coding sequences 
(post-transcriptional gene silencing (PTGS)). In the 
cytoplasm, siRNA incorporation into Argonaute 1 (AGO1) 
or AGO2 during infection could result in translational 
inhibition or mRNA cleavage. AGO-incorporated siRNAs 
have not yet been profiled during a geminivirus infection. 
b | A speculative model of RDR-associated secondary 
siRNAs. In the canonical TGS pathway, the RNA 
polymerases Pol IV and Pol V, along with RDR2, synthesize 
dsRNA for DCL3 to process into 24-nucleotide siRNAs, 
which are used for long-distance movement or de novo 
methylation of viral DNA. Direct evidence of an RDR2 
requirement is lacking for geminiviruses, probably owing 
to the suppression of the methyl cycle (which acts before 
RDR2) by viral suppressors of RNA silencing (VSRs;  
in this case, transcriptional activator protein (TrAP;  
known as C2 in some viruses) and βC1). To prevent any  
de novo methylation from being propagated, DNA 
methyltransferase 1 (MET1) and chromomethylase 3 
(CMT3), which are both needed for maintenance 
methylation, are downregulated by replication initiator 
protein (Rep) and C4 (REF. 105). RDR6 is needed for 
long-distance siRNA activity, whereas RDR6, suppressor 
of gene silencing 3 (SGS3) and DCL4 are needed for 
cell-to-cell movement of silencing. SGS3 recognizes 
dsRNA with 5ʹ overhangs and recruits RDR6 to make the 
RNA double-stranded. DCL4 produces 21-nucleotide 
siRNAs that can move from cell to cell. The VSR V2 
prevents SGS3 access to dsRNA with 5ʹ overhangs.  
βC1 and C4 (or AC4 in some viruses) bind to siRNAs, 
preventing their incorporation into AGO and their 
movement. Red arrows indicate RDR synthesis of the 
second RNA strand. 
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RDR2 is necessary for the production of nuclear 
dsRNA, which is cleaved by DCL3 into 24-nt siRNAs, 
whereas RDR6 is associated with DCL4 and 21-nt  
siRNAs (FIG. 4b). RDR6 is recruited to aberrant RNA 
through the action of suppressor of gene silencing 
3 (SGS3), a protein that is unique to plants and binds 
dsRNA with 5′ overhangs111. The V2 VSR competes with 
SGS3 to prevent RDR6 binding111,112. Both 24- and 21-nt 
siRNAs are involved in long-distance silencing, which is 
counteracted by V2 and C4 binding to siRNAs113,114.

Only 21-nt siRNAs, along with RDR6, SGS3 and 
DCL4, have demonstrated roles in the cell-to-cell 
movement of silencing96,110. Single mutations in RDR6, 
SGS3 or DCL4 cause modest increases in viral DNA 
during infection by a geminivirus that can escape from 
phloem cells and invade mesophyll and epidermal cells 
in infected leaves94,100,107. This pathway might not affect 
geminiviruses restricted to vascular tissue, which is 
part of the long-distance silencing pathway110, but this 
remains to be tested.

The first geminivirus resistance gene to be cloned, 
TY1, encodes a tomato RDRγ with homology to RDR3, 
RDR4 and RDR5 of A. thaliana115. Although RDRγ 
is conserved in all plants, its function is not known. 
Because TY1 does not confer resistance to RNA viruses, 
it has been proposed that its RDR activity is required for 
DNA methylation115. The TY1 locus contains a polymor-
phism that increases RDRγ expression115, strongly sug-
gesting that some type of secondary siRNA (or dsRNA) 
is important for symptom attenuation and reduction of 
geminivirus DNA accumulation.

A correlation between methylation of intergenic 
regions and geminivirus resistance was recently found 
in soybean116, underscoring the importance of under-
standing how viral DNA sequences are targeted for 
siRNA production and methylation. Secondary siRNA 
production can lead to off-target silencing, indicating 
that there are strict requirements for RDR access to RNA 
that are only now beginning to be characterized117,118. An 
increased knowledge of the substrate requirements for 
RDR2 and other host factors involved in TGS might 
clarify how viral DNA sequences are chosen for methyl-
ation110. These requirements and a better functional 
understanding of RDRγ are important goals for future 
research.

siRNAs as symptom determinants. Although the exact 
origin and function of geminivirus-associated symp-
toms remains unclear, there is little doubt that siRNA 
pathways play a part. The endogenous miRNA regula-
tory system participates in various host developmental 
and stress-related pathways and is especially important 
in leaf development. VSRs such as V2, which binds to 
siRNA, do not discriminate between 21-nt siRNAs and 
miRNAs114, which might explain why V2 is a pathogenic-
ity determinant. VSR interference with host silencing 
proteins, such as SGS3, would also disrupt normal devel-
opment by inhibiting trans-acting siRNAs, which modu-
late auxin activity, among other things. It remains to be 
seen whether any of the siRNA interactions represent  
viral strategies to enhance infection.

Future directions
Over the past few years, studies have established 
that geminivirus–plant interactions are complex and 
involve diverse pathways, ranging from the plant cell 
cycle to gene silencing. These studies have identified 
interactions that are essential for infection and pro-
vided insight into how geminiviruses redirect plant 
processes and counteract host defence responses. This 
information has the potential to lead to new approaches 
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to combat geminivirus disease and improve food secu-
rity, but gaps in our knowledge currently limit these 
efforts.

For example, we need to know which geminivirus–
plant interactions are conserved and essential for infec-
tion, and how to disrupt them without interfering with 
normal plant development and growth. To do this, it 
will be crucial to distinguish interactions and events 
that occur in direct response to viral proteins or viral 
DNA versus those that are indirect consequences of 
the host response to infection. It will also be necessary 
to better characterize geminivirus–plant interaction 
networks and their spatial and temporal relationships 
during infection. Hence, future studies will depend on 
the development of strategies to separate virus-positive 
cells from virus-free cells in infected leaves and on the 
integration of such strategies with high-throughput 
sequencing technologies and cell biology approaches. 
These studies are likely to uncover important virus–
host interactions that have not yet been described 
because of the challenges associated with analysing 
cell populations in which less than 2% of the cells are 
infected, as is the case for most geminiviruses that 
are limited to vascular tissue. These studies will also 
provide insight into why the consequences of some 
interactions differ depending on the virus–host com-
bination and whether the host cellular context con-
tributes to some of these differences. Such studies will 
provide crucial information about the mechanisms and 
outcomes of geminivirus–host interactions and which 
components might be the ‘Achilles heels’ and potential 
resistance targets.

The recent identification of a non-canonical RDR as a 
geminivirus resistance gene115 and the lack of an obvious 
aetiology for siRNA populations in geminivirus-infected 
plants97–100,116 underscore the importance of better under-
standing the roles of TGS and PTGS during infection. 
Geminivirus interactions with a recently discovered 
DNA methylation pathway that is specific to plants and 
involves 21-nt siRNAs instead of 24-nt siRNAs119 should 
also be examined. For PTGS, a combination of siRNA 
profiling and analysis of the degradome (5′ uncapped, 
polyadenylated RNA resulting from cleavage by RISC) 
will lead to the identification of those siRNAs that  
are incorporated into RISC and putative host mRNAs 
that are targeted for silencing by geminivirus infec-
tion120. Such information is essential if we are to fully  
characterize geminivirus–host interactions.

It will also be essential to translate mechanistic stud-
ies of geminivirus–host interactions in model organisms 
to agricultural systems. Such studies will be facilitated 
by the tremendous increase in whole-genome sequence 
resources for important crops susceptible to geminivirus 
disease. New resources will soon be available, includ-
ing expressed sequence tags from different tissues 
of resistant and susceptible hosts, and genome-wide 
sequences of siRNAs from infected and healthy plants. 
When we have identified a more complete set of com-
mon host targets, a systems approach can be developed 
to better understand virus–host interactions. A multi-
disciplinary and dedicated effort might finally lead  
to the identification of essential, conserved interactions 
that can be targeted to develop novel disease control  
strategies against these important plant pathogens.
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