Overview

- Types of seed-borne plant pathogens
- Pathogen characteristics that influence epidemic development
- Epidemiological consequences of seed-borne infection
- Quantification of seed-borne inoculum
- Seed treatments
- Conclusions

Types of seedborne plant pathogens

There are four main types of seed contamination:

- Pathogen structures mixed in with the seeds
 - bunt balls (Tilletia caries)
 - nematode galls (Anguina tritici)
 - sclerotia (Sclerotinia sclerotiorum or Claviceps purpurea)
 - pathogens in plant debris
- Propagules adhering to the seed coat
 - spores (Ustilago hordei, Tilletia caries)
 - bacteria (Pseudomonas spp., Xanthomonas spp., Clavibacter spp.)
- Resting hyphae or bacteria inside the seed coat
 - resting hyphae (Pyrenophora graminearum)
 - pycnidia (late blight on celery by Septoria apiicola)
 - acervuli (anthracnose on bean by Colletotrichum lindemuthianum)
 - bacila (Pseudomonas, Xanthomonas, Clavibacter)
- Pathogen deep-seated within the seed (in embryo or other tissues)
 - wheat loose smut (Ustilago nuda)
 - wheat root rot and leaf blotch (Cochliobolus sativus)
 - corn ear rot (Fusarium moniliforme)
 - bean common blight (Xanthomonas phaseoli)
 - viruses (Common Bean Mosaic on beans)
Pathogen characteristics that influence epidemic development of seedborne diseases

- Pathogen population size
 - Number of seeds infected
 - Number of propagules per seed (less important)
- Location of propagules on/in seeds
- Probability of survival of infected seeds
- Probability of spread of disease to above-ground plant parts
- Reproduction and spread among plants
- Fungicide tolerance

Pathogen transmission from seed to plants and losses

- Epidemiological consequences of seed infection

Initiation of epidemic from seed depends on:

- Inoculum potential
 - Seeding rate × level of contamination × probability of infection
- Environmental factors
 - Soil temperature
 - Soil moisture
 - Soil pH

Epidemiological consequences of seed infection

Spread of pathogens from seed to plant depends on:

- Level of contamination and probability of infection
- Spread of pathogens from seed to plant
 - Seeding decay, then spread to rest of plant and to other plants (Fusarium spp., Phoma lingam, etc.)
 - No seeding decay, but infected seed serves as primary inoculum (Septoria apiicola, Xanthomonas campestris pv. campestris, etc.)
 - Systemic infection; no plant to plant spread until flowering (Ustilago nuda, Cochliobolus graminearum)

Quantification of seedborne inoculum

Determine number of seeds to be tested

- Low percentage of infected seed can lead to severe crop loss (LMV in lettuce < 1:30,000, bacterial blight on beans < 1:16,000)
- Statistically impossible to guarantee NO contamination
- Set tolerable or acceptable level of contamination I_{ac}
- Set non-tolerable level I_{nt}

Population/sample	accept	reject
Sample | Type 1 error or α | Error
Right decision | accept (Type 2 error or β) | Error

Critical value
Quantification of seed-borne inoculum

Acceptability level for seed contamination depends on:
- seed size and seed density per acre (seeding rate)
- inoculum level (incidence and severity, pathogen vigor)
- accuracy of seed health testing method
- infection probability in field, depending on:
 - susceptibility of host, transmissibility to seedling/plant,
 - environmental conditions for plant-to-plant spread
- probability of infection of subsequent crops
- relative importance of other means of transmission
- possibility of disinfecting seeds
- economic considerations

First indicate acceptable probabilities of making an error
- If you accept a seed lot, you want to have a high probability of making the right decision ($1 - \alpha = 95\%$)
- If you accept a seed lot you want to run only a very small risk of making a mistake ($\beta = 1\%$)

The chance of finding a positive seed is very small
(Poisson distribution)

The lower the number of positive testing seeds NI, the larger the P of accepting the seed lot ($1-\alpha$ or β)

Read paper of Geng et al. 1983

Cumulative probability curves for the Poisson distribution

If you test many seeds, they can be tested in batches or samples
- K = number of samples
- N = Number of seeds per sample
- $Pc = probability of seed contamination (depends on I; $Pc = 1 - e^{-NI}$)
- $Ps = sensitivity of the test$
- $Pd = probability of detection ($Pd = Pc \times Ps$ in 1 sample)
- $P+ = probability of at least 1 positive result in K samples ($P+ = 1 - (1 - Pd)^K$)

Direct examination
- Moist chamber methods (on paper, textile, inert media)
- Incubation on agar media (surface disinfect seed; kill embryo by freezing or 2,4-D; incubation temperature; light needed?)
- Embryo test
- Emergence tests (greenhouse or field)

Indirect methods
- Washing contaminants from seeds and plating
- Serological tests (ELISA, immunofluorescence)
- PCR based methods

Quantification of seed-borne inoculum -Indirect assays

No of seeds per sample (N) and number of samples (k) for indirect assays at various sensitivities (Ps) and tolerable levels (I)
Quantification of seedborne inoculum

- **Criteria for choice of method**
 - purpose of test
 - sensitivity of test
 - costs
- **Statistical considerations for seed health testing**
 - sampling (number of samples per seed lot, number of seeds per sample)
 - probability of detection
 - Assessment of results (probability of errors a and b)

Seed treatments

- **Hot water treatment** (nematodes and smuts)
- **Salt water treatment**: brining (bunt)
- **Acid treatment** (bacterial canker of tomato)
- **Coating with biological control agents**
- **Chemical treatments**
 - systemic fungicides: carboxin for control of smuts; benomyl for control of Oomycetes; metalaxyl for control of Oomycetes
 - non-systemic fungicides: copper compounds for control of bacteria and fungi; captan, dithiordan and maneb broad spectrum

Summary

- Many pathogen characteristics determine potential for epidemic development from seedborne inoculum
 - Which factors?
- There are many seed health assays
 - What are the sampling considerations?
 - Which technique would you choose?
 - Depends on: